Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Cell Rep ; 40(12): 111369, 2022 09 20.
Article En | MEDLINE | ID: mdl-36130488

Microglia, the resident immune cells of the brain, play important roles during development. Although bi-directional communication between microglia and neuronal progenitors or immature neurons has been demonstrated, the main sites of interaction and the underlying mechanisms remain elusive. By using advanced methods, here we provide evidence that microglial processes form specialized contacts with the cell bodies of developing neurons throughout embryonic, early postnatal, and adult neurogenesis. These early developmental contacts are highly reminiscent of somatic purinergic junctions that are instrumental for microglia-neuron communication in the adult brain. The formation and maintenance of these junctions is regulated by functional microglial P2Y12 receptors, and deletion of P2Y12Rs disturbs proliferation of neuronal precursors and leads to aberrant cortical cytoarchitecture during development and in adulthood. We propose that early developmental formation of somatic purinergic junctions represents an important interface for microglia to monitor the status of immature neurons and control neurodevelopment.


Microglia , Neurogenesis , Adult , Brain , Humans , Microglia/physiology , Neurons/physiology
2.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article En | MEDLINE | ID: mdl-36012321

While the fungal metabolite illudin M (1) is indiscriminately cytotoxic in cancer and non-malignant cells, its retinoate 2 showed a greater selectivity for the former, especially in a cerebral context. Illudin M killed malignant glioma cells as well as primary neurons and astrocytes at similarly low concentrations and destroyed their microtubule and glial fibrillary acidic protein (GFAP) networks. In contrast, the ester 2 was distinctly more cytotoxic in highly dedifferentiated U87 glioma cells than in neurons, which were even stimulated to enhanced growth. This was also observed in co-cultures of neurons with U87 cells where conjugate 2 eventually killed them by induction of differentiation based on the activation of nuclear receptors, which bind to retinoid-responsive elements (RARE). Hence, illudin M retinoate 2 appears to be a promising drug candidate.


Brain Neoplasms , Glioma , Astrocytes/metabolism , Brain Neoplasms/metabolism , Cytotoxins , Glial Fibrillary Acidic Protein/metabolism , Glioma/metabolism , Humans , Polycyclic Sesquiterpenes , Tretinoin/metabolism
3.
Cells ; 11(14)2022 07 21.
Article En | MEDLINE | ID: mdl-35883701

Altered tryptophan (TRP) metabolism may have an important role in migraine susceptibility through its main metabolites, serotonin and kynurenine (KYN). Both affect pain processing and stress response by interfering with neural and brain hypersensitivity and by interacting with chemokines and cytokines that control vascular and inflammatory processes. The involvement of these pathways in migraine has been widely studied, but acute citalopram neuroendocrine challenge on TRP metabolism and cytokine profile has not been investigated yet. In our study, females with episodic migraine without aura and healthy controls were studied before and after acute citalopram or placebo in a double-blind setting. At baseline, increased TRP/large neutral amino acid (LNAA) ratio and decreased RANTES chemokine concentration were detected in migraine patients compared to controls. The challenge induced a significant increase in TRP, KYN, and TRP/LNAA in healthy controls, but not in migraine patients. Furthermore, migraine attack frequency negatively correlated with KYN/TRP ratio and positively correlated with the neuroendocrine-challenge-induced KYN concentration increase. Our results support a decreased breakdown of TRP via KYN pathway and a failure to modulate TRP-KYN pathway during citalopram-induced acute stress together with an increased vascular sensitivity in migraine. These mechanisms may provide useful drug targets for future drug development.


Migraine Disorders , Tryptophan , Citalopram/pharmacology , Citalopram/therapeutic use , Double-Blind Method , Female , Humans , Kynurenine/metabolism , Migraine Disorders/drug therapy , Serotonin , Tryptophan/metabolism
4.
J Exp Med ; 219(3)2022 03 07.
Article En | MEDLINE | ID: mdl-35201268

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Cerebrovascular Circulation/physiology , Microglia/physiology , Neurovascular Coupling/physiology , Receptors, Purinergic/physiology , Adult , Aged , Animals , Brain/physiology , Calcium Signaling/physiology , Carotid Artery Diseases/physiopathology , Evoked Potentials/physiology , Female , Humans , Hypercapnia/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Purinergic P2Y12/physiology , Vasodilation/physiology , Vibrissae/innervation
5.
PLoS Biol ; 20(1): e3001526, 2022 01.
Article En | MEDLINE | ID: mdl-35085235

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1ß (IL-1ß), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.


Brain Edema/genetics , Brain Injuries/genetics , Microglia/metabolism , Solute Carrier Family 12, Member 2/genetics , Stroke/genetics , Animals , Brain Edema/chemically induced , Brain Edema/metabolism , Brain Edema/pathology , Brain Injuries/chemically induced , Brain Injuries/metabolism , Brain Injuries/pathology , Bumetanide/pharmacology , Embryo, Mammalian , Gene Expression Regulation , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation , Injections, Intraventricular , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Phenotype , Solute Carrier Family 12, Member 2/deficiency , Stroke/chemically induced , Stroke/metabolism , Stroke/pathology
6.
Science ; 367(6477): 528-537, 2020 01 31.
Article En | MEDLINE | ID: mdl-31831638

Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.


Brain Injuries/immunology , Brain/immunology , Intercellular Junctions/immunology , Microglia/immunology , Neurons/immunology , Receptors, Purinergic P2Y12/physiology , Animals , Brain/ultrastructure , Brain Injuries/pathology , Calcium , Cell Communication/immunology , HEK293 Cells , Humans , Mice , Mitochondria/immunology , Shab Potassium Channels/genetics , Shab Potassium Channels/physiology , Signal Transduction
7.
Proc Natl Acad Sci U S A ; 116(26): 13067-13076, 2019 06 25.
Article En | MEDLINE | ID: mdl-31182576

Neuroimmune interactions may contribute to severe pain and regional inflammatory and autonomic signs in complex regional pain syndrome (CRPS), a posttraumatic pain disorder. Here, we investigated peripheral and central immune mechanisms in a translational passive transfer trauma mouse model of CRPS. Small plantar skin-muscle incision was performed in female C57BL/6 mice treated daily with purified serum immunoglobulin G (IgG) from patients with longstanding CRPS or healthy volunteers followed by assessment of paw edema, hyperalgesia, inflammation, and central glial activation. CRPS IgG significantly increased and prolonged swelling and induced stable hyperalgesia of the incised paw compared with IgG from healthy controls. After a short-lasting paw inflammatory response in all groups, CRPS IgG-injected mice displayed sustained, profound microglia and astrocyte activation in the dorsal horn of the spinal cord and pain-related brain regions, indicating central sensitization. Genetic deletion of interleukin-1 (IL-1) using IL-1αß knockout (KO) mice and perioperative IL-1 receptor type 1 (IL-1R1) blockade with the drug anakinra, but not treatment with the glucocorticoid prednisolone, prevented these changes. Anakinra treatment also reversed the established sensitization phenotype when initiated 8 days after incision. Furthermore, with the generation of an IL-1ß floxed(fl/fl) mouse line, we demonstrated that CRPS IgG-induced changes are in part mediated by microglia-derived IL-1ß, suggesting that both peripheral and central inflammatory mechanisms contribute to the transferred disease phenotype. These results indicate that persistent CRPS is often contributed to by autoantibodies and highlight a potential therapeutic use for clinically licensed antagonists, such as anakinra, to prevent or treat CRPS via blocking IL-1 actions.


Autoantibodies/immunology , Complex Regional Pain Syndromes/immunology , Immunoglobulin G/immunology , Interleukin-1alpha/immunology , Interleukin-1beta/immunology , Adult , Animals , Autoantibodies/administration & dosage , Autoantibodies/blood , Complex Regional Pain Syndromes/blood , Complex Regional Pain Syndromes/diagnosis , Complex Regional Pain Syndromes/drug therapy , Disease Models, Animal , Female , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lower Extremity/injuries , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Microglia/pathology , Middle Aged , Pain Measurement , Receptors, Interleukin-1 Type I/antagonists & inhibitors , Receptors, Interleukin-1 Type I/immunology , Receptors, Interleukin-1 Type I/metabolism , Spinal Cord Dorsal Horn/immunology , Spinal Cord Dorsal Horn/pathology
8.
Br J Cancer ; 120(2): 207-217, 2019 01.
Article En | MEDLINE | ID: mdl-30518816

BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.


Alarmins/genetics , Carcinoma, Ovarian Epithelial/genetics , DNA, Mitochondrial/genetics , Extracellular Traps/genetics , Aged , Ascites/genetics , Ascites/pathology , Blood Platelets/metabolism , Carcinoma, Ovarian Epithelial/pathology , Extracellular Traps/metabolism , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Leukocyte Elastase/genetics , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neutrophils/metabolism , Neutrophils/pathology , Progression-Free Survival , Tumor Microenvironment/genetics
9.
Cell Calcium ; 75: 1-13, 2018 11.
Article En | MEDLINE | ID: mdl-30098501

The P2X7R protein, a P2 type purinergic receptor functioning as a non-selective cation channel, is expressed in different cell types of the central nervous system in several regions of the brain. The activation of the P2X7R protein by ATP modulates excitatory neurotransmission and contributes to microglial activation, apoptosis and neuron-glia communication. Zinc is an essential micronutrient that is highly concentrated in the synaptic vesicles of glutamatergic hippocampal neurons where free zinc ions released into the synaptic cleft alter glutamatergic signal transmission. Changes in both P2X7R-mediated signaling and brain zinc homeostasis have been implicated in the pathogenesis of mood disorders. Here, we tested the hypothesis that extracellular zinc regulates P2X7R activity in the hippocampus. We observed that P2X7R is expressed in both neurons and glial cells in primary mouse hippocampal neuron-glia culture. Propidium iodide (PI) uptake through large pores formed by pannexins and P2X7R was dose-dependently inhibited by extracellular zinc ions. Calcium influx mediated by P2X7R in glial cells was also reduced by free zinc ions. Interestingly, no calcium influx was detected in response to ATP or 3'-O-(4-Benzoyl) benzoyl ATP (BzATP) in neurons despite the expression of P2X7R at the plasma membrane. Our results show that free zinc ions can modulate hippocampal glial purinergic signaling, and changes in the activity of P2X7R may contribute to the development of depression-like behaviors associated with zinc deficiency.


Astrocytes/metabolism , Extracellular Space/metabolism , Hippocampus/cytology , Receptors, Purinergic P2X7/metabolism , Zinc/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Biomarkers/metabolism , Calcium/metabolism , Cations, Divalent/pharmacology , Cell Survival/drug effects , Cells, Cultured , Connexins/metabolism , Dendrites/drug effects , Dendrites/metabolism , Membrane Potentials/drug effects , Mice, Inbred C57BL , Synapses/metabolism
10.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Article En | MEDLINE | ID: mdl-30027450

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Brain/metabolism , Herpesviridae Infections/metabolism , Microglia/metabolism , Monocytes/metabolism , Receptors, Purinergic P2Y12/metabolism , Signal Transduction/physiology , Animals , Brain/virology , Mice , Microglia/virology , Neurons/metabolism , Neurons/virology
11.
Nat Commun ; 9(1): 2848, 2018 07 20.
Article En | MEDLINE | ID: mdl-30030438

The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABAA receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.


Acetylcholine/physiology , Hippocampus/physiology , Receptors, GABA-A/physiology , gamma-Aminobutyric Acid/physiology , Animals , Calcium/physiology , Dendrites/physiology , Female , Imaging, Three-Dimensional , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/physiopathology , Neurotransmitter Agents/physiology , Perfusion , Synapses/physiology , Synaptic Potentials , Synaptic Transmission , Synaptic Vesicles/physiology
12.
Biochim Biophys Acta Bioenerg ; 1859(3): 201-214, 2018 Mar.
Article En | MEDLINE | ID: mdl-29273412

Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.


Energy Metabolism/physiology , Glucose/metabolism , Glutamine/metabolism , Lactates/metabolism , Microglia/metabolism , Pyruvates/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Cells, Cultured , Energy Metabolism/drug effects , Female , Glucose/pharmacology , Glutamine/pharmacology , Glycolysis/drug effects , Lactates/pharmacology , Male , Mice , Microglia/cytology , Microglia/drug effects , Oxygen Consumption/drug effects , Pyruvates/pharmacology
13.
Front Cell Neurosci ; 11: 401, 2017.
Article En | MEDLINE | ID: mdl-29311832

During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134)-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2)-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor) stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms) in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.

14.
Nat Commun ; 7: 11499, 2016 05 03.
Article En | MEDLINE | ID: mdl-27139776

Microglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation. We show that selective elimination of microglia leads to a striking, 60% increase in infarct size, which is reversed by microglial repopulation. Microglia-mediated protection includes reduction of excitotoxic injury, since an absence of microglia leads to dysregulated neuronal calcium responses, calcium overload and increased neuronal death. Furthermore, the incidence of spreading depolarization (SD) is markedly reduced in the absence of microglia. Thus, microglia are involved in changes in neuronal network activity and SD after brain injury in vivo that could have important implications for common brain diseases.


Brain Injuries/physiopathology , Microglia/physiology , Nerve Net/physiopathology , Neurons/physiology , Stroke/physiopathology , Animals , Brain Ischemia/physiopathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microscopy, Fluorescence, Multiphoton , Neuroprotection/physiology , Time-Lapse Imaging/methods
15.
Nanoscale ; 7(9): 4199-210, 2015 Mar 07.
Article En | MEDLINE | ID: mdl-25673096

Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of "aged" NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with "identical" NPs.


Lipopolysaccharides/chemistry , Nanoparticles/chemistry , Polystyrenes/chemistry , Adsorption , Animals , Blood-Brain Barrier/metabolism , Cell Survival/drug effects , Cells, Cultured , Drug Carriers/chemistry , Mice , Mice, Transgenic , Microscopy, Confocal , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Particle Size , Surface Properties
16.
Cell Cycle ; 13(22): 3551-64, 2014.
Article En | MEDLINE | ID: mdl-25483092

Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization signals (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. However, no systematic survey has yet been performed in human cells to analyze this regulatory process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we focused on the human proteome and found that numerous proteins, previously not identified in this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-depth investigations, we selected a number of these proteins and analyzed how point mutations, expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish nuclear import processes. To understand the mechanism underlying these phenomena, we performed a video microscopy-based kinetic analysis to obtain information on cell-cycle dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically altered protein re-import characteristics into the nucleus during the G1 phase. Our results suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition during the cell cycle.


Cyclin-Dependent Kinases/genetics , DNA Repair/genetics , Nuclear Localization Signals/genetics , Proteome , Amino Acid Sequence , CDC2 Protein Kinase , Cell Cycle/genetics , Cell Division , Cyclin-Dependent Kinases/metabolism , Humans , Phosphorylation
17.
Stem Cells Dev ; 23(21): 2600-12, 2014 Nov 01.
Article En | MEDLINE | ID: mdl-24870815

Mesenchymal stems or stromal cells (MSCs) are rare multipotent cells with potent regenerative and immunomodulatory properties. Microglial cells (MGs) are specialized tissue macrophages of the central nervous system (CNS) that continuously survey their environment with highly motile extensions. Recently, several studies have shown that MSCs are capable of reprogramming microglia into an "M2-like" phenotype characterized by increased phagocytic activity and upregulated expression of anti-inflammatory mediators in vitro. However, the precise polarization states of microglia in the presence of MSCs under physiological or under inflammatory conditions remain largely unknown. In this study, we found that MSCs induce a mixed microglia phenotype defined as Arg1-high, CD86-high, CD206-high, IL-10-high, PGE2-high, MCP-1/CCL2-high, IL-1ß-moderate, NALP-3-low, and TNF-α-low cells. These MSC-elicited MGs have high phagocytic activity and antigen-presenting ability. Lipopolysaccharide is able to shape this microglia phenotype quantitatively, but not qualitatively in the presence of MSCs. This unique polarization state resembles a novel regulatory microglia phenotype, which might contribute to the resolution of inflammation and to tissue repair in the CNS.


Antigen-Presenting Cells/cytology , Macrophages/cytology , Mesenchymal Stem Cells/cytology , Microglia/cytology , Animals , Animals, Newborn , Antigen-Presenting Cells/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Proliferation , Cells, Cultured , Cellular Reprogramming/drug effects , Coculture Techniques , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microscopy, Confocal , Phagocytosis/physiology , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
18.
Stem Cells Dev ; 22(20): 2777-93, 2013 Oct 15.
Article En | MEDLINE | ID: mdl-23734950

Retinoic acid (RA) is present at sites of neurogenesis in both the embryonic and adult brain. While it is widely accepted that RA signaling is involved in the regulation of neural stem cell differentiation, little is known about vitamin A utilization and biosynthesis of active retinoids in the neurogenic niches, or about the details of retinoid metabolism in neural stem cells and differentiating progenies. Here we provide data on retinoid responsiveness and RA production of distinct neural stem cell/neural progenitor populations. In addition, we demonstrate differentiation-related changes in the expression of genes encoding proteins of the retinoid machinery, including components responsible for uptake (Stra6) and storage (Lrat) of vitamin A, transport of retinoids (Rbp4, CrbpI, CrabpI-II), synthesis (Rdh10, Raldh1-4), degradation of RA (Cyp26a1-c1) and RA signaling (Rarα,ß,γ, Rxrα,ß,γ). We show that both early embryonic neuroectodermal (NE-4C) stem cells and late embryonic or adult derived radial glia like progenitors (RGl cells) are capable to produce bioactive retinoids but respond differently to retinoid signals. However, while neuronal differentiation of RGl cells can not be induced by RA, neuron formation by NE-4C cells is initiated by both RA and RA-precursors (retinol or retinyl acetate). The data indicate that endogenous RA production, at least in some neural stem cell populations, may result in autocrine regulation of neuronal differentiation.


Adult Stem Cells/metabolism , Embryonic Stem Cells/metabolism , Neural Stem Cells/metabolism , Neuroglia/metabolism , Neurons/metabolism , Tretinoin/metabolism , Vitamin A/metabolism , Adult Stem Cells/cytology , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Cell Differentiation , Cell Lineage/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Isoenzymes/genetics , Isoenzymes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neural Stem Cells/cytology , Neurogenesis/genetics , Neuroglia/cytology , Neurons/cytology , Primary Cell Culture , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Retinoic Acid 4-Hydroxylase , Retinol-Binding Proteins, Cellular/genetics , Retinol-Binding Proteins, Cellular/metabolism , Signal Transduction
19.
J Alzheimers Dis ; 36(3): 487-501, 2013.
Article En | MEDLINE | ID: mdl-23645098

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß peptides (Aß) as perivascular deposits and senile plaques in the brain. The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and reduced risk in AD in several epidemiological trials; however the exact underlying molecular mechanism remains to be elucidated. The aim of the study was to test whether DHA can exert a direct protective effect on the elements of the neurovascular unit, such as neurons, glial cells, brain endothelial cells, and pericytes, treated with Aß42 (15 µM). A dose-dependent high cellular toxicity was found in viability assays in all cell types and on acute hippocampal slices after treatment with Aß42 small oligomers prepared in situ from an isopeptide precursor. The cell morphology also changed dramatically in all cell types. In brain endothelial cells, damaged barrier function and increased para- and transcellular permeability were observed after peptide treatment. The production of reactive oxygen species was elevated in pericytes and endothelial and glial cells. DHA (30 µM) significantly decreased the Aß42-induced toxic effects in all cell types measured by viability assays, and protected the barrier integrity and functions of brain endothelial cells. DHA also decreased the elevated rhodamine 123 accumulation in brain endothelial cells pre-treated with Aß42 indicating an effect on efflux pump activity. These results indicate for the first time that DHA can protect not only neurons but also the other elements of the neurovascular unit from the toxic effects of Aß42 and this effect may be beneficial in AD.


Amyloid beta-Peptides/pharmacology , Docosahexaenoic Acids/pharmacology , Neuroglia/drug effects , Neurons/drug effects , Peptide Fragments/pharmacology , Prosencephalon/drug effects , Animals , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neuroglia/metabolism , Neurons/metabolism , Pericytes/drug effects , Pericytes/metabolism , Prosencephalon/metabolism , Rats , Rats, Wistar
20.
Cytoskeleton (Hoboken) ; 68(6): 325-39, 2011 Jun.
Article En | MEDLINE | ID: mdl-21634026

We investigate the effect of myosin II inhibition on cell shape and nuclear motility in cultures of mouse radial glia-like neural progenitor and rat glioma C6 cells. Instead of reducing nucleokinesis, the myosin II inhibitor blebbistatin provokes an elongated bipolar morphology and increased nuclear motility in both cell types. When myosin II is active, time-resolved traction force measurements indicate a pulling force between the leading edge and the nucleus of C6 cells. In the absence of myosin II activity, traction forces during nucleokinesis are diminished below the sensitivity threshold of our assay. By visualizing the centrosome position in C6 cells with GFP-centrin, we show that in the presence or absence of myosin II activity, the nucleus tends to overtake or lag behind the centrosome, respectively. We interpret these findings with the help of a simple viscoelastic model of the cytoskeleton consisting active contractile and passive compressed elements.


Cell Nucleus/metabolism , Cell Shape , Myosin Type II/antagonists & inhibitors , Myosin Type II/metabolism , Actins/metabolism , Animals , Cell Nucleus/ultrastructure , Cell Polarity , Cells, Cultured , Centrosome/metabolism , Cytoskeleton/metabolism , Elasticity , Heterocyclic Compounds, 4 or More Rings/pharmacology , Mice , Microtubules/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neuroglia/cytology , Neuroglia/drug effects , Neuroglia/metabolism , Rats , Stress, Mechanical
...